

GEOCHEMISTRY IN GEOTHERMAL EXPLORATION

Argeo-C2 Conference

24th-28th November 2008

Entebbe, Uganda

James Wambugu - KenGen

Role of Geochemistry in Geothermal Exploration

- Mapping, sampling & chemical analysis of surface discharges
- Chemical data interpretation
- Discharges include: water (hot/cold), fumarole steam
- Non- manifestation areas Soil gas survey
- Soil gas survey include measuring chemical components associated with geothermal activity (CO₂ gas, Hg, Rn-222 radioactivity)

Objectives of Geochemical Work

- To gather enough geochemical data which would be adequate to address the following questions:
- Availability and extent of a geothermal resource
- Locate possible drilling targets
- Characterize geothermal fluids using the chemistry
- Predict prevailing deep fluid temp.

Geothermal Manifestations

- Geothermal indicators occur in form of the following:
- > Fumaroles
- ➤ Hot (boiling) springs
- > Mudpools
- > Hot altered grounds
- > Geysers

Steam jets

Boiling steam jets

- Steam jets at L.
 Bogoria which sprout like geysers
- Found at the western edge of the lake
- They are at local boiling temp (98 °C)
- Famous tourist attraction

Fumarole occurrences

Discharging fumaroles

- Sometimes
 fumaroles occur in
 extremely difficult
 terrain
- Strong fumaroles are associated with mineral alteration products

Altered grounds

Altered grounds

- Some areas are characterized by hot altered grounds with no visible discharges
- Such areas could be having buried fumarolic activity

Case example

- Surface exploration in Menengai Area in Nakuru District – Kenya.
- Area characterised by very few surface geothermal manifestations- only a few fumaroles inside the main Menengai crater and to the NW close to caldera rim
- Few boreholes produce warm water located to the NW and SW of crater
- Cold water producing boreholes in the eastern side

Geochemical Data Collection

- Field work started on 25th January 2004
- Work divided into three parts:
- Water sampling (B/holes, springs etc)
- Fumarole steam and condensate sampling
- Soil gas survey (for Rn-222, CO₂, temp)

Fumarole /borehore location

Soil gas survey sample points

Fumarole sampling

Evacuated gas sampling flask

 Gases collected in special gas sampling flasks after evacuation and charged with NaOH solution to absorb acidic gases

Fumarole discharges

Sampling pump

- Some manifestations are too weak and pumping is necessary
- Samples analysed for gases and condensate analysed for volatile components in the lab

Why work in three Parts?

- 1. **Fumaroles:** results help in computing reservoir temp at depth where the steam is being formed
- 2. Water analysis: results used to evaluate origin of the fluids (use of isotopes), temp estimations at depth, predict scaling and corrosion problems
- 3. Soil gas survey: Rn-222 and CO₂ in the soil gas are indicators of permeability and possible location of a reservoir. CO₂ may also be used in locating buried fumarolic activities where other evidence is lacking

Soil gas survey

Gas absorption vessels

- CO₂ gas sampled from the soil gas in the field using an Orsat apparatus
- CO₂ absorbed in vessels containing
 KOH solution and measured in %

Chemical Analysis

- Equipments used for chemical analysis include:
- > AAS, ICP
- > GC, IC
- > UV-VIS
- > Titrpoprocessors
- > etc

Chemical analysis

- Collected samples are analyzed in the lab
- Water samples analyzed for all the major & minor components
- Steam condensate analyzed for volatile components

Gas analysis

- Fumarole gases analyzed using a Gas chromatograph
- Gases analyzed by
 GC: N₂, H₂, O₂, CH₄
- CO₂ and H₂S
 analyzed by titration

GC

Fumarole gas analysis (mmol/kg steam)

Fum No.	loc	date	Temp °C	CO ₂	H ₂ S	H_2	CH ₄	N ₂	O ₂
MF1	E1724 N9975	29.1.04	60	28.28	0.1	0.3	-	1.97	0.722
MF2	E1753 N9977	6.2.04	91.2	3590	0.42	0	0.34	4.69	1.39

Steam condensate chemistry

Fum	T °C	pH/20 °C	CO ₂	H ₂ S	Cl	SO ₄	В	F	TDS	Cond
MF1	60	6.0	33	0.17	19.5	3.45	0.17	0.19	11	20
MF2	94	6.0	38	0.17	24.1	5.1	0.07	0.96	20	50
MF3	77	7.5	88	0.03	31.4	6.7	0.12	0.13	6	10
MF4	81	5.8	143	0.17	15.6	7.0	0.14	<0.1	4	10
MF5	88	6.7	77	0.17	16	5.43	0.05	0.214	6	10
MF6	84	6.7	33	0.7	16.3	6.74	0.2	<0.1	5.6	10
MF7	73	6.9	88	0.07	33	29	0.38	0.26	12	25
MF8	90	6.9	220	0.03	34.1	8.6	0.14	1.64	8	15

Gas ratios

Fuma	CO ₂ /H ₂ S	CO ₂ /H ₂	H_2/H_2S	H ₂ /CO ₂	CO ₂ /N ₂
MF1	282.8	94.3	3	0.011	14.4
MF2	8547.6	_	_	_	764.8
					, 5

Gas geo temp (°C)

Fuma	TCO ₂ /H ₂	TH_2	TH ₂ S	TCO ₂
MF1	285.3	266.2	251.2	298.5
MF2	_	_	265.5	371.6

Carbon dioxide distribution

Radon-222 distribution

Ground temp (°C)

- A geothermal resource exists in Menengai caldera with reservoir temp in the range of 250°C
- The high values of CO₂ measured to the NW part of the caldera could suggest a possible resource area.
- From the geochemical data obtained during this study, the area to the south and SE of caldera do not seem to be attractive at all.
- Deep drilling is recommended to proof the resource

Proposed drill sites

Menegai Caldera floor

